State of California California Environmental Protection Agency AIR RESOURCES BOARD # Ambient Pesticide Air Monitoring For Diazinon and Diazoxon In Monterey, San Benito and Santa Clara Counties During July and August of 2009 Prepared by Steve Rider, Air Pollution Specialist Special Purpose Monitoring Section Air Quality Surveillance Branch Monitoring and Laboratory Division August 5, 2010 This report has been reviewed by the staff of the California Air Resources Board (CARB) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Air Resources Board, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. ### **Monitoring Report Approval** | Report Title: | Ambient Pesticide Air Monitoring For Diazinon a San Benito and Santa Clara Counties during July | | |---------------|---|------------------------| | Project Lead: | Steve Rider, Air Pollution Specialist | | | Approval: | The following monitoring report has been review Monitoring and Laboratory Division. | ed and approved by the | | | Signatures: | | | | | | | | | | | | | | | | Mac McDougall, Manager Special Purpose Monitoring Section | Date | | | | | | | | | | | | | | | Kenneth R. Stroud, Chief
Air Quality Surveillance Branch | Date | #### **Executive Summary** ## Ambient Pesticide Air Monitoring For Diazinon and Diazoxon in Monterey, San Benito and Santa Clara Counties during July and August of 2009 At the request of the Department of Pesticide Regulation (DPR), the Air Resources Board (ARB) conducted ambient air monitoring for the insecticide O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate (Diazinon) and the Oxygen analog (Diazoxon) in Monterey, San Benito and Santa Clara Counties from July 1 through August 20, 2009. This insecticide is generally used for controlling sucking and leaf eating insects and its CAS Registry Number is 333-41-5. Sampling was performed in King City, Soledad, Chualar, Salinas, Hollister and the background site was in Gilroy. A total of 211 air samples which included 48 collocated pairs and 19 quality control (QC) samples were collected by staff of the Air Quality Surveillance Branch. One (1) sampler, which had two (2) each independently plumbed rotameters and pumps, was located at each site. Samples were collected on XAD-2 resin sorbent tubes with an air sampling flow rate of three (3) liters per minute (LPM). The resin sorbent tube air samples were analyzed using gas chromatography/mass spectrometer (GC/MS) in the selected ion-monitoring mode (SIM) by ARB's Northern Laboratory Branch in Sacramento for both Diazinon and Diazoxon. <u>Diazinon resin sorbent tube results</u>: The reported Diazinon results from 192 resin sorbent tube samples indicated ambient concentrations ranging from less than the method detection limit (MDL) to a maximum of 17.3 ng/m³ at the Gilroy background site. Elevated levels at Gilroy were most likely caused by pesticides containing Diazinon which were applied to control a major flea outbreak in the area surrounding the site. The highest measured value at a non-background site was 13.5 ng/m³ at Salinas during the seventh week. <u>Diazoxon resin sorbent tube results</u>: Reported Diazoxon results from 192 resin sorbent tube air samples ranged from less than the MDL to a maximum of 12.0 ng/m³ at the Chualar site which was below the estimated quantitation level (EQL) of 18.0 ng/m³. #### Table of Contents | S | ection | | <u>Page</u> | |----|--------|--|-------------| | | MONI | TORING REPORT APPROVAL | ii | | | EXEC | UTIVE SUMMARY | iii | | | TABLE | OF CONTENTS | iv-v | | | 1.0 | INTRODUCTION | 1 | | | 2.0 | DEVIATIONS FROM PROTOCOL | 1 | | | 3.0 | SAMPLING SITES | 1-5 | | | 4.0 | METHODS | 6 | | | 5.0 | RESULTS | 7-12 | | | 6.0 | QUALITY CONTROL RESULTS | 12-15 | | | 7.0 | SUMMARY | 16 | | T | ABLES: | | | | | Table | 1: Sampler Waypoints | 2 | | | Table | 2: Diazinon/Diazoxon Ambient Monitoring Results | 8-11 | | | Table | 3: Diazinon/Diazoxon Ambient QC Collocated Results | 12-13 | | | Table | 4: Diazinon Ambient QC Field Spike Results | 14 | | | Table | 5: Diazoxon Ambient QC Field Spike Results | 15 | | | Table | 6: Diazinon/Diazoxon Ambient QC Trip Spike and Blank Results | 15 | | FI | GURES | 3: | | | | Figure | 1: Aerial Photo Overview of Monitored Area | 2 | | | Figure | 2: Aerial Photo Overview of the GIL Site | 3 | | | Figure | 3: Aerial Photo Overview of the KCY Site | 3 | | | Figure | 4: Aerial Photo Overview of the SOL Site | 4 | | | Figure | 5: Aerial Photo Overview of the CHU Site | 4 | | | Figure | 6: Aerial Photo Overview of the SAL Site | 5 | | Figure 7: A | Aerial Photo Overview of the HOL Site5 | |-------------|--| | APPENDICES | : | | APPENDIX | A: Sampling Protocol | | APPENDIX | B: Close-up Aerial Photos and Site Photographs | | APPENDIX | C: Laboratory Results Report | | APPENDIX | D: Diazinon/Diazoxon Ambient Field Log Sheets | | APPENDIX | E: Calibration and Certification Reports | #### 1.0 Introduction At the request of the Department of Pesticide Regulation (DPR) (January 2009 Memorandum, Warmerdam to Goldstene), the Air Resources Board (ARB) conducted ambient air monitoring for the insecticide O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate (Diazinon) and the Oxygen analog (Diazoxon). This insecticide is generally used for controlling sucking and leaf eating insects and its Chemical Abstract Service (CAS) Registry Number is 333-41-5. One hundred ninety two air samples and nineteen quality control (QC) samples were collected at six (6) sites in Monterey, San Benito and Santa Clara Counties. Ambient Air monitoring for these pesticides occurred over a period of eight (8) weeks from July 1 through August 20 of 2009. This monitoring was performed under the requirements of the California Code of Regulation, Food and Agriculture Code, Section 14022(c) which requires the ARB, "...to document the level of airborne emissions...of pesticides that may be determined to pose a present or potential hazard...", when requested by the DPR. Monitoring was conducted to coincide with the use of Diazinon as an insecticide on lettuce and other food crops for human consumption. The "Sampling Protocol for Diazinon and Propyzamide Ambient Study" dated July 7, 2009, and the "Standard Operating Procedure Sampling and Analysis of O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate (Diazinon) and the Oxygen analog (Diazoxon)" dated June 2009, are located in Appendix A. #### 2.0 Deviations From Protocol No significant deviations occurred during this Diazinon/Diazoxon ambient study as stated in the "Sampling Protocol for Diazinon and Propyzamide Ambient Study". #### 3.0 Sampling Sites Diazinon is used throughout the State of California and throughout the calendar year. 2007 data generated by DPR shows that Monterey County has the highest Diazinon use by a factor of three (3) over the second highest use county (Fresno). In Monterey County, Diazinon use is highest during the months of June through August and therefore DPR requested that ARB perform ambient air monitoring for Diazinon during these summer months. Pesticide air monitoring sites were determined using historical pesticide use information supplied by the DPR's 2009 monitoring recommendations. Six (6) sampling sites (five (5) air monitoring sites and one (1) urban background site) were selected in relatively high-population areas and/or areas frequented by people (e.g., schools or school district offices, fire stations or other public buildings). Each air monitoring site, except the urban background site, is located in areas with historically high Diazinon pesticide use. DPR requested that the background site be located in Gilroy and that at least one of the air monitoring sites be in Hollister. Exact placement and details are given in Table 1 (Sampler Waypoints) and can be seen located on the aerial photos, Figures 1-7. Soledad's aerial photo has not yet been updated to show the new school. The closest farmed fields to Soledad were 0.2 miles to the east, but upwind fields were approximately 0.6 miles to the north northeast during the study. For more detailed views see Appendix B for site photographs and close-up aerial photos. **TABLE 1: SAMPLER WAYPOINTS** | Site ID | Site Location Name and Address | Waypoints | |-----------------|---|------------------------------| | GIL (Gilroy) | BAAQMD Station @ Glen View Elementary | N 36 ⁰ 59' 57.8" | | (Background) | School, 695 9 th Street. | W 121 ⁰ 34' 28.9" | | | Elevation = 206', Inlet = 11.9' | | | KCY (King City) | MBUAPCD Station @ San Lorenzo | N 36 ⁰ 12' 32.1" | | | Elementary School, 421 Pearl Street. | W 121 ⁰ 07' 33.7" | | | Elevation = 318', Inlet = 14.5' | | | SOL (Soledad) | Roof of Cafeteria @ Jack Franscioni | N 36 ^O 26' 10.8" | | | Elementary School, 779 Orchard Lane. | W 121 ⁰ 18' 52.0" | | | Elevation = 369', Inlet = 16.8' | | | CHU (Chualar) | Roof of Salinas Rural Fire Station, 24281 | N 36 ^O 34' 17.3" | | | Washington Street. | W 121 ⁰ 31' 03.3" | | | Elevation = 138', Inlet = 24.0' | | | SAL (Salinas) | Roof of Cafeteria @ La Joya Elementary | N 36 ^O 43' 57.8" | | | School, 56 Rogge Road, Bolsa Knolls area. | W 121 ⁰ 38' 02.7" | | | Elevation = 143', Inlet = 17.4' | | | HOL (Hollister) | Roof of classrooms @ R.O. Hardin K-5 | N 36 ^O 50' 53.1" | | | School, 761 South Street. | W 121 ⁰ 24' 39.3" | | | Elevation = 287', Inlet = 16.6' | | Note: Elevation is Topo map ground level and inlet is feet above ground level. FIGURE 1: AERIAL PHOTO OVERVIEW OF MONITORED AREA FIGURE 2: AERIAL PHOTO OVERVIEW OF THE GIL SITE FIGURE 3: AERIAL PHOTO OVERVIEW OF THE KCY SITE FIGURE 4: **AERIAL PHOTO OVERVIEW OF THE SOL SITE** FIGURE 5: AERIAL PHOTO OVERVIEW OF THE CHU SITE FIGURE 6: AERIAL PHOTO OVERVIEW OF THE SAL SITE FIGURE 7: AERIAL PHOTO OVERVIEW OF THE HOL SITE #### 4.0 Methods Typical ambient pesticide studies consist of four (4) samples per week for 24-hour periods \pm one (1) hour. Due to current furlough and overtime policies all but the fifth week consisted of three (3) 23-hour samples. The first sample was started around midday on Monday and collected 23 hours later. This procedure was repeated for each subsequent sample period and the final sample was retrieved on Thursday around midday in time for the ARB staff to return to Sacramento without acquiring overtime. A total of 211 air samples were collected from July 1st through August 20th. Sixty-seven quality control (QC) XAD resin tube samples were collected consisting of seven (7) field spikes, four (4) trip spikes, eight (8) trip blanks and 48 collocated samples. The sampling process was designed to collect Diazinon, Diazoxon and Propyzamide on a single XAD resin sorbent tube. Results of Propyzamide sampling will be presented in a separate report. The Monitoring and Laboratory Division (MLD) laboratory extracted all pesticides from each sample tube for analysis. Samples were collected by passing a measured volume of ambient air through one XAD resin sorbent tube that is mounted on a sampling tree. The sampling flow rates of 3.0 liters per minute (LPM) were accurately measured and the sampling system operated continuously for 23 hours \pm 1 hour with the exact operating interval recorded on the log sheet. At the end of each sampling period, the tubes were placed in culture tubes with an identification label affixed and placed in a dry ice cooler. At least once a week, collected samples were transported on dry ice to ARB's MLD laboratory for analysis. The exposed XAD-2 resin sorbent tubes (SKC #226-30-06) were stored in a freezer until extracted in the laboratory with organic solvent. Sample flow was controlled by an inline rotameter (flow range of 0-5 LPM). Each site had one (1) collocated sample per week. Prior to each sampling period, the sampler was leak checked with an unopened resin sorbent tube. After the sample resin sorbent tube was installed, the flow rate was set at 3.0 LPM using a digital mass flow meter. The flow rate was again checked just prior to removal the next day. The average flow rate was within \pm 20% of 3.0 LPM (\pm 0.6 LPM or 2.4–3.6 LPM) or the sample was considered invalid. For details of the monitoring method, please refer to Appendix A, "Sampling Protocol for Diazinon and Propyzamide Ambient Study" dated July 7, 2009. Collected resin sorbent tube samples were analyzed using the laboratory method titled, "Standard Operating Procedure Sampling and Analysis of O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate (Diazinon) and the Oxygen Analog (Diazoxon)", located in Appendix A as part of, "Sampling Protocol for Diazinon and Propyzamide Ambient Study". Appendix C contains the laboratory results report titled, "O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate (Diazinon) and the Oxygen Analog (Diazoxon) Method Development and Analytical Results for Ambient Air Monitoring Samples" (October 2009). #### 5.0 Results Diazinon and Diazoxon sample resin sorbent tube results are presented in Table 2 (Diazinon/Diazoxon Ambient Monitoring Results) by site name. These analytical results were obtained from the laboratory's raw data which had up to six (6) decimal places. Thus, Table 2's results differ slightly from the laboratory's data located in Appendix C due to rounding. Appendix D contains the Diazinon/Diazoxon Ambient Field Log Sheets which contain pertinent data covering the operations during the study. Site nomenclature for this study was based upon the location of each site and the run number. Additional letters were added, after inserting a dash to identify the type of sample collected (background, collocated, blank or spike). #### **Examples:** GIL3 = Gilroy run 3 GIL3-FS = Gilroy run 3 Field Spike KCY3 = King City run 3 SOL3 = Soledad run 3 CHU3 = Chualar run 3 SAL3 = Salinas (Bolsa Knolls) run 3 HOL3 = Hollister run 3 TB2 = Trip Blank 2 TS2 = Trip Spike 2 GIL4-C = Gilroy run 4 collocated For exact sampling dates and times refer to appendix D. Table 2: Diazinon/Diazoxon Ambient Results (1 of 4) | | Table 2: Diazinon/Diazoxon Ambient Results (1 of 4) | | | | | | | | | | | | | |----------------|---|----------------|----------------|--------------|-------------------|----------------|--------------|------------------|----------------|--|--|--|--| | Log | Sample | Sampler | Elapsed | _ | Total | Diazinon | Diazinon | Diazoxon | Diazoxon | | | | | | # | Name | ID# | Time | Flow | Volume | ng/sample | ng/m³ | ng/sample | ng/m³ | | | | | | | | | (Hours) | (LPM) | (m ³) | | | | | | | | | | 003 | CHU1 | PS14A | 23.00 | 3.12 | 4.302 | <6.48 | <1.51 | <15.12 | <3.51 | | | | | | 012 | CHU2 | PS14A | 23.20 | 3.00 | 4.179 | <6.48 | <1.55 | <15.12 | <3.62 | | | | | | 013 | CHU2-C | PS14B | 23.24 | 3.02 | 4.214 | <6.48 | <1.54 | <15.12 | <3.59 | | | | | | 024 | CHU3 | PS14A | 23.23 | 2.98 | 4.156 | <6.48 | <1.56 | <15.12 | <3.64 | | | | | | 035 | CHU4 | PS14A | 23.01 | 2.98 | 4.110 | <6.48 | <1.58 | <15.12 | <3.68 | | | | | | 036 | CHU4-C | PS14B | 23.01 | 2.99 | 4.124 | <6.48 | <1.57 | <15.12 | <3.67 | | | | | | 044 | CHU5 | PS14A | 23.01 | 2.98 | 4.110 | <6.48 | <1.58 | <15.12 | <3.68 | | | | | | 053 | CHU6 | PS14A | 23.45 | 2.97 | 4.181 | 28.62 | 6.84 | 50.22 | 12.01 | | | | | | 054 | CHU6-C | PS14B | 23.45 | 2.96 | 4.167 | 26.73 | 6.41 | 48.57 | 11.66 | | | | | | 062 | CHU7 | PS14A | 22.96 | 3.02 | 4.163 | <6.48 | <1.56 | <15.12 | <3.63 | | | | | | 068 | CHU8 | PS14A | 23.40 | 2.98 | 4.187 | <6.48 | <1.55 | <15.12 | <3.61 | | | | | | 074 | CHU9 | PS14A | 23.41 | 3.00 | 4.210 | <6.48 | <1.54 | <15.12 | <3.59 | | | | | | 082 | CHU10 | PS14A | 23.47 | 3.01 | 4.242 | <6.48 | <1.53 | <15.12 | <3.56 | | | | | | 083 | CHU10-C | PS14B | 23.48 | 3.01 | 4.236 | <6.48 | <1.53 | <15.12 | <3.57 | | | | | | 093 | CHU11 | PS14A | 23.01 | 3.04 | 4.193 | <6.48 | <1.55 | <15.12 | <3.61 | | | | | | 106
107 | CHU12 | PS14A
PS14B | 23.00 | 3.19
3.19 | 4.404
4.404 | 18.87 | 4.29
4.86 | <15.12 | <3.43 | | | | | | 115 | CHU12-C
CHU13 | PS14B
PS14A | 23.00
23.50 | 3.00 | 4.404 | 21.39
14.10 | 3.33 | <15.12
<15.12 | <3.43
<3.57 | | | | | | 121 | CHU13 | PS14A
PS14A | 23.40 | 3.02 | 4.236 | <6.48 | <1.53 | <15.12 | <3.57 | | | | | | 128 | CHU15 | PS14A | 23.36 | 3.02 | 4.222 | 21.78 | 5.16 | <15.12 | <3.58 | | | | | | 137 | CHU16 | PS14A | 23.15 | 3.01 | 4.177 | 21.70 | 5.15 | <15.12 | <3.62 | | | | | | 149 | CHU17 | PS14A | 23.13 | 3.02 | 4.171 | 12.81 | 3.13 | <15.12 | <3.63 | | | | | | 150 | CHU17-C | PS14B | 23.04 | 3.02 | 4.171 | 11.73 | 2.81 | <15.12 | <3.63 | | | | | | 156 | CHU18 | PS14A | 22.98 | 3.02 | 4.160 | 23.94 | 5.75 | <15.12 | <3.63 | | | | | | 165 | CHU19 | PS14A | 23.00 | 3.02 | 4.164 | <6.48 | <1.56 | <15.12 | <3.63 | | | | | | 166 | CHU19-C | PS14B | 23.00 | 3.02 | 4.164 | <6.48 | <1.56 | <15.12 | <3.63 | | | | | | 174 | CHU20 | PS14A | 23.00 | 3.00 | 4.136 | 21.45 | 5.19 | <15.12 | <3.66 | | | | | | 180 | CHU21 | PS14A | 23.08 | 3.01 | 4.164 | 24.84 | 5.97 | <15.12 | <3.63 | | | | | | 188 | CHU22 | PS14A | 23.40 | 3.01 | 4.222 | <6.48 | <1.53 | <15.12 | <3.58 | | | | | | 201 | CHU23 | PS14A | 23.18 | 3.00 | 4.168 | <6.48 | <1.55 | <15.12 | <3.63 | | | | | | 202 | CHU23-C | PS14B | 23.21 | 3.01 | 4.188 | <6.48 | <1.55 | <15.12 | <3.61 | | | | | | 209 | CHU24 | PS14A | 23.05 | 3.01 | 4.159 | <6.48 | <1.56 | <15.12 | <3.64 | | | | | | 007 | GIL1 | PS01A | 23.47 | 3.27 | 4.609 | <6.48 | <1.41 | <15.12 | <3.28 | | | | | | 017 | GIL2 | PS01A | 23.00 | 2.99 | 4.122 | <6.48 | <1.57 | <15.12 | <3.67 | | | | | | 018 | GIL2-C | PS01B | 23.00 | 2.99 | 4.129 | <6.48 | <1.57 | <15.12 | <3.66 | | | | | | 020 | GIL3 | PS01A | 23.50 | 2.97 | 4.190 | <6.48 | <1.55 | <15.12 | <3.61 | | | | | | 029 | GIL4 | PS01A | 22.99 | 3.02 | 4.162 | <6.48 | <1.56 | <15.12 | <3.63 | | | | | | 030 | GIL4-C | PS01B | 22.99 | 3.00 | 4.141 | <6.48 | <1.56 | <15.12 | <3.65 | | | | | | 041 | GIL5 | PS01A | 22.99 | 2.96 | 4.086 | <6.48 | <1.59 | <15.12 | <3.70 | | | | | | 047 | GIL6 | PS01A | 23.16 | 2.97 | 4.130 | <6.48 | <1.57 | <15.12 | <3.66 | | | | | | 048 | GIL6-C | PS01B | 23.16 | 3.00 | 4.165 | <6.48 | <1.56 | <15.12 | <3.63 | | | | | | 059 | GIL7 | PS01A | 23.25 | 3.00 | 4.188 | <6.48 | <1.55 | <15.12 | <3.61 | | | | | | 065 | GIL8 | PS01A | 23.77 | 3.03 | 4.317 | <6.48 | <1.50 | <15.12 | <3.50 | | | | | | 077 | GIL9 | PS01A | 23.55 | 3.01 | 4.256 | <6.48 | <1.52 | <15.12 | <3.55 | | | | | | 088 | GIL10 | PS01A | 23.55 | 3.00 | 4.235 | <6.48 | <1.53 | <15.12 | <3.57 | | | | | | 089 | GIL10-C | PS01B | 23.58 | 3.00 | 4.240 | <6.48 | <1.53 | <15.12 | < 3.57 | | | | | | 097 | GIL11 | PS01A | 23.00 | 3.06 | 4.225 | <6.48 | <1.53 | <15.12 | <3.58 | | | | | | 100 | GIL12 | PS01A | 23.00 | 3.04 | 4.198 | <6.48 | <1.54 | <15.12 | <3.60 | | | | | | 101 | GIL12-C | PS01B | 23.00 | 3.03 | 4.184 | <6.48 | <1.55 | <15.12 | <3.61 | | | | | | 112 118 | GIL13
GIL14 | PS01A
PS01A | 23.42 | 3.00 | 4.212 | 72.87 | 17.30 | 20.16 | 4.79 | | | | | | | BOLDED – AI | | 23.40 | 3.00 | 4.215 | <6.48 | <1.54 | <15.12 | <3.59 | | | | | Note: BOLDED = Analytical results \geq EQL. Table 2: Diazinon/Diazoxon Ambient Results Continued (2 of 4) | | | | | | | it ivesuits | | | | |-----|---------|---------|---------|-------|--------|-------------|----------|-----------|----------| | Log | Sample | Sampler | - | _ | Total | Diazinon | Diazinon | Diazoxon | Diazoxon | | # | Name | ID# | Time | Flow | Volume | ng/sample | ng/m³ | ng/sample | ng/m³ | | | | | (Hours) | (LPM) | (m³) | | | | | | 125 | GIL15 | PS01A | 23.38 | 3.01 | 4.225 | 13.71 | 3.24 | <15.12 | <3.58 | | 131 | GIL16 | PS01A | 23.04 | 3.01 | 4.157 | 15.27 | 3.67 | <15.12 | <3.64 | | 145 | GIL17 | PS01A | 22.99 | 3.02 | 4.162 | <6.48 | <1.56 | <15.12 | <3.63 | | 146 | GIL17-C | PS01B | 22.99 | 3.02 | 4.162 | <6.48 | <1.56 | <15.12 | <3.63 | | 153 | GIL18 | PS01A | 23.00 | 3.00 | 4.136 | <6.48 | <1.57 | <15.12 | <3.66 | | 159 | GIL19 | PS01A | 23.00 | 3.05 | 4.212 | <6.48 | <1.54 | <15.12 | <3.59 | | 160 | GIL19-C | PS01B | 23.00 | 3.06 | 4.218 | <6.48 | <1.54 | <15.12 | <3.58 | | 171 | GIL20 | PS01A | 23.00 | 3.01 | 4.150 | <6.48 | <1.56 | <15.12 | <3.64 | | 177 | GIL21 | PSO1A | 23.08 | 3.01 | 4.171 | <6.48 | <1.55 | <15.12 | <3.62 | | 184 | GIL22 | PS01A | 23.17 | 3.02 | 4.194 | <6.48 | <1.54 | <15.12 | <3.60 | | 195 | GIL23 | PS01A | 23.13 | 3.01 | 4.180 | <6.48 | <1.55 | <15.12 | <3.62 | | 196 | GIL23-C | PS01B | 23.17 | 3.01 | 4.180 | <6.48 | <1.55 | <15.12 | <3.62 | | 206 | GIL24 | PS01A | 23.31 | 3.00 | 4.192 | <6.48 | <1.55 | <15.12 | <3.61 | | 005 | HOL1 | PS02A | 23.18 | 3.08 | 4.280 | <6.48 | <1.51 | <15.12 | <3.53 | | 006 | HOL1-C | PS02B | 23.21 | 3.13 | 4.362 | <6.48 | <1.49 | <15.12 | <3.47 | | 016 | HOL2 | PS02A | 23.00 | 2.99 | 4.129 | <6.48 | <1.57 | <15.12 | <3.66 | | 026 | HOL3 | PS02A | 23.01 | 2.98 | 4.117 | <6.48 | <1.57 | <15.12 | <3.67 | | 039 | HOL4 | PS02A | 23.01 | 2.96 | 4.089 | <6.48 | <1.58 | <15.12 | <3.70 | | 040 | HOL4-C | PS02B | 22.99 | 2.97 | 4.099 | <6.48 | <1.58 | <15.12 | <3.69 | | 046 | HOL5 | PS02A | 22.99 | 3.00 | 4.134 | <6.48 | <1.57 | <15.12 | <3.66 | | 057 | HOL6 | PS02A | 23.65 | 3.01 | 4.274 | <6.48 | <1.52 | <15.12 | <3.54 | | 058 | HOL6-C | PS02B | 23.65 | 2.98 | 4.231 | <6.48 | <1.53 | <15.12 | <3.57 | | 064 | HOL7 | PS02A | 23.11 | 3.03 | 4.197 | <6.48 | <1.54 | <15.12 | <3.60 | | 070 | HOL8 | PS02A | 22.96 | 3.02 | 4.163 | <6.48 | <1.56 | <15.12 | <3.63 | | 076 | HOL9 | PS02A | 23.51 | 3.01 | 4.242 | <6.48 | <1.53 | <15.12 | <3.56 | | 086 | HOL10 | PS02A | 23.75 | 2.99 | 4.264 | <6.48 | <1.52 | <15.12 | <3.55 | | 087 | HOL10-C | PS02B | 23.79 | 3.00 | 4.278 | <6.48 | <1.51 | <15.12 | <3.53 | | 096 | HOL11 | PS02A | 22.97 | 3.02 | 4.158 | <6.48 | <1.56 | <15.12 | <3.64 | | 110 | HOL12 | PS02A | 23.00 | 3.39 | 4.678 | <6.48 | <1.39 | <15.12 | <3.23 | | 111 | HOL12-C | PS02B | 23.00 | 3.36 | 4.637 | <6.48 | <1.40 | <15.12 | <3.26 | | 117 | HOL13 | PS02A | 23.42 | 3.00 | 4.219 | <6.48 | <1.54 | <15.12 | <3.58 | | 123 | HOL14 | PS02A | 23.41 | 3.01 | 4.231 | <6.48 | <1.53 | <15.12 | <3.57 | | 130 | HOL15 | PS02A | 23.37 | 3.00 | 4.203 | <6.48 | <1.54 | <15.12 | <3.60 | | 141 | HOL16 | PS02A | 23.32 | 2.99 | 4.187 | <6.48 | <1.55 | <15.12 | <3.61 | | 142 | HOL16-C | PS02B | 23.32 | 2.96 | 4.138 | <6.48 | <1.57 | <15.12 | <3.65 | | 152 | HOL17 | PS02A | 23.03 | 3.02 | 4.169 | <6.48 | <1.55 | <15.12 | <3.63 | | 158 | HOL18 | PS02A | 22.99 | 3.01 | 4.148 | <6.48 | <1.56 | <15.12 | <3.65 | | 169 | HOL19 | PS02A | 23.00 | 3.01 | 4.157 | <6.48 | <1.56 | <15.12 | <3.64 | | 170 | HOL19-C | PS02B | 23.00 | 3.01 | 4.150 | <6.48 | <1.56 | <15.12 | <3.64 | | 176 | HOL20 | PS02A | 23.00 | 2.99 | 4.122 | <6.48 | <1.57 | <15.12 | <3.67 | | 182 | HOL21 | PS02A | 23.08 | 3.00 | 4.157 | <6.48 | <1.56 | <15.12 | <3.64 | | 192 | HOL22 | PS02A | 23.66 | 3.01 | 4.276 | <6.48 | <1.52 | <15.12 | <3.54 | | 193 | HOL22-C | PS02B | 23.66 | 3.01 | 4.276 | <6.48 | <1.52 | <15.12 | < 3.54 | | 204 | HOL23 | PS02A | 23.56 | 2.99 | 4.223 | <6.48 | <1.53 | <15.12 | < 3.58 | | 211 | HOL24 | PS02A | 23.01 | 2.96 | 4.083 | <6.48 | <1.59 | <15.12 | <3.70 | | 001 | KCY1 | PS-12A | 23.25 | 2.94 | 4.097 | <6.48 | <1.58 | <15.12 | <3.69 | | 800 | KCY2 | PS12A | 23.29 | 3.05 | 4.265 | <6.48 | <1.52 | <15.12 | < 3.54 | | 009 | KCY2-C | PS12B | 23.29 | 3.02 | 4.216 | <6.48 | <1.54 | <15.12 | <3.59 | | 022 | KCY4 | PS12A | 23.39 | 2.98 | 4.177 | <6.48 | <1.55 | <15.12 | <3.62 | | 031 | KCY4 | PS12A | 23.00 | 3.08 | 4.254 | <6.48 | <1.52 | <15.12 | < 3.55 | | 032 | KCY4-C | PS12B | 23.00 | 3.05 | 4.212 | <6.48 | <1.54 | <15.12 | < 3.59 | | 042 | KCY5 | PS12A | 23.01 | 2.98 | 4.109 | <6.48 | <1.58 | <15.12 | <3.68 | Table 2: Diazinon/Diazoxon Ambient Results Continued (3 of 4) | Table 2: Diazinon/Diazoxon Ambient Results Continue | | | | | | | | | | |-----------------------------------------------------|------------|-------|---------|-------|--------|-----------|----------|-----------|----------| | Log | Sample | - | Elapsed | | Total | Diazinon | Diazinon | Diazoxon | Diazoxon | | # | Name | ID# | Time | Flow | Volume | ng/sample | ng/m³ | ng/sample | ng/m³ | | | | | (Hours) | (LPM) | (m³) | | | | | | 049 | KCY6 | PS12A | 23.17 | 2.96 | 4.111 | <6.48 | <1.58 | <15.12 | <3.68 | | 050 | KCY6-C | PS12B | 23.17 | 2.99 | 4.152 | <6.48 | <1.56 | <15.12 | <3.64 | | 060 | KCY7 | PS12A | 23.17 | 3.00 | 4.165 | <6.48 | <1.56 | <15.12 | <3.63 | | 066 | KCY8 | PS12A | 23.63 | 3.01 | 4.271 | <6.48 | <1.52 | <15.12 | <3.54 | | 072 | KCY9 | PS12A | 23.28 | 3.06 | 4.270 | <6.48 | <1.52 | <15.12 | <3.54 | | 078 | KCY10 | PS12A | 23.27 | 3.02 | 4.212 | <6.48 | <1.54 | <15.12 | <3.59 | | 079 | KCY10-C | PS12B | 23.27 | 3.04 | 4.240 | <6.48 | <1.53 | <15.12 | <3.57 | | 091 | KCY11 | PS12A | 23.00 | 3.02 | 4.164 | <6.48 | <1.56 | <15.12 | <3.63 | | 102 | KCY12 | PS12A | 23.00 | 3.17 | 4.376 | <6.48 | <1.48 | <15.12 | <3.46 | | 103 | KCY12-C | PS12B | 23.00 | 3.11 | 4.287 | <6.48 | <1.51 | <15.12 | <3.53 | | 113 | KCY13 | PS12A | 23.45 | 3.02 | 4.244 | <6.48 | <1.53 | <15.12 | <3.56 | | 119 | KCY14 | PS12A | 23.42 | 3.01 | 4.225 | <6.48 | <1.53 | <15.12 | <3.58 | | 126 | KCY15 | PS12A | 23.37 | 3.01 | 4.223 | <6.48 | <1.53 | <15.12 | <3.58 | | 133 | KYC16 | PS12A | 23.45 | 2.98 | 4.196 | <6.48 | <1.54 | <15.12 | <3.60 | | 134 | KYC16-C | PS12B | 23.45 | 3.09 | 4.343 | <6.48 | <1.49 | <15.12 | <3.48 | | 147 | KYC17 | PS12A | 22.99 | 3.02 | 4.161 | <6.48 | <1.56 | <15.12 | <3.63 | | 154 | KYC18 | PS12A | 23.00 | 3.02 | 4.163 | <6.48 | <1.56 | <15.12 | <3.63 | | 161 | KYC19 | PS12A | 23.00 | 3.05 | 4.205 | <6.48 | <1.54 | <15.12 | <3.60 | | 162 | KYC19-C | PS12B | 23.00 | 3.05 | 4.212 | <6.48 | <1.54 | <15.12 | <3.59 | | 172 | KYC20 | PS12A | 23.00 | 3.01 | 4.150 | <6.48 | <1.56 | <15.12 | <3.64 | | 178 | KYC21 | PS12A | 23.08 | 3.01 | 4.171 | <6.48 | <1.55 | <15.12 | <3.62 | | 186 | KCY22 | PS12A | 23.40 | 3.02 | 4.236 | <6.48 | <1.53 | <15.12 | <3.57 | | 197 | KCY23 | PS12A | 23.06 | 3.01 | 4.167 | <6.48 | <1.55 | <15.12 | <3.63 | | 198 | KCY23-C | PS12B | 23.06 | 3.01 | 4.167 | <6.48 | <1.55 | <15.12 | <3.63 | | 207 | KCY24 | PS12A | 23.35 | 3.01 | 4.213 | <6.48 | <1.54 | <15.12 | <3.59 | | 004 | SAL1 | PS03A | 23.38 | 3.13 | 4.394 | <6.48 | <1.47 | <15.12 | <3.44 | | 014 | SAL-2 | PS03A | 23.05 | 3.01 | 4.166 | <6.48 | <1.56 | <15.12 | <3.63 | | 015 | SAL2-C | PS03B | 23.08 | 3.01 | 4.171 | <6.48 | <1.55 | <15.12 | <3.63 | | 025 | SAL3 | PS02A | 23.11 | 3.03 | 4.204 | <6.48 | <1.54 | <15.12 | <3.60 | | 037 | SAL4 | PS03A | 23.00 | 2.74 | 3.776 | <6.48 | <1.72 | <15.12 | <4.00 | | 038 | SAL4-C | PS03B | 23.00 | 2.76 | 3.804 | <6.48 | <1.70 | <15.12 | <3.98 | | 045 | SAL5 | PS03A | 22.99 | 2.97 | 4.099 | <6.48 | <1.58 | <15.12 | <3.69 | | 055 | SAL6 | PS03A | 23.60 | 3.00 | 4.251 | 16.41 | 3.86 | 41.49 | 9.76 | | 056 | SAL6-C | PS03B | 23.60 | 3.00 | 4.244 | 15.84 | 3.73 | 41.91 | 9.88 | | 063 | SAL7 | PS03A | 23.10 | 2.96 | 4.098 | <6.48 | <1.58 | <15.12 | <3.69 | | 069 | SAL8 | PS03A | 23.25 | 3.04 | 4.243 | <6.48 | <1.53 | <15.12 | <3.59 | | 075 | SAL9 | PS03A | 23.43 | 3.01 | 4.227 | <6.48 | <1.53 | <15.12 | <3.58 | | 084 | SAL10 | PS03A | 23.66 | 3.00 | 4.255 | <6.48 | <1.52 | <15.12 | <3.55 | | 085 | SAL10-C | PS03B | 22.97 | 3.00 | 4.138 | <6.48 | <1.57 | <15.12 | <3.65 | | 095 | SAL11 | PS03A | 23.00 | 2.98 | 4.109 | <6.48 | <1.58 | <15.12 | <3.68 | | 108 | SAL12 | PS03A | 23.00 | 3.26 | 4.493 | 18.39 | 4.09 | <15.12 | <3.37 | | 109 | SAL12-C | PS03B | 23.00 | 3.28 | 4.527 | 20.37 | 4.50 | <15.12 | <3.34 | | 116 | SAL13 | PS03A | 23.40 | 3.01 | 4.222 | <6.48 | <1.53 | <15.12 | <3.58 | | 122 | SAL14 | PS03A | 23.42 | 3.02 | 4.240 | <6.48 | <1.53 | <15.12 | <3.57 | | 129 | SAL15 | PS03A | 23.37 | 3.01 | 4.217 | <6.48 | <1.54 | <15.12 | <3.59 | | 139 | SAL16 | PS03A | 23.09 | 3.02 | 4.180 | <6.48 | <1.55 | <15.12 | <3.62 | | 140 | SAL16-C | PS03B | 23.09 | 2.99 | 4.139 | <6.48 | <1.57 | <15.12 | <3.65 | | 151 | SAL17 | PS03A | 23.01 | 3.01 | 4.158 | 28.92 | 6.95 | <15.12 | <3.64 | | 157 | SAL18 | PS03A | 22.98 | 3.01 | 4.146 | 45.72 | 11.03 | <15.12 | <3.65 | | 167 | SAL19 | PS03A | 23.00 | 3.02 | 4.164 | <6.48 | <1.56 | <15.12 | <3.63 | | 168 | SAL19-C | PS03B | 23.04 | 3.01 | 4.164 | <6.48 | <1.56 | <15.12 | <3.63 | | | BOLDED - A | | | | | | | | | Note: BOLDED = Analytical results ≥ EQL. Table 2: Diazinon/Diazoxon Ambient Results Continued (4 of 4) | Log | Sample | Sampler | Elapsed | Avg. | Total | Diazinon | Diazinon | Diazoxon | Diazoxon | |-----|---------|---------|---------|-------|-------------------|-----------|----------|-----------|----------| | # | Name | ID# | Time | Flow | Volume | ng/sample | ng/m³ | ng/sample | ng/m³ | | | | | (Hours) | (LPM) | (m ³) | | | | | | 175 | SAL20 | PS03A | 22.99 | 3.00 | 4.141 | 55.71 | 13.45 | <15.12 | <3.65 | | 181 | SAL21 | PS03A | 23.09 | 3.02 | 4.180 | 22.50 | 5.38 | <15.12 | <3.62 | | 190 | SAL22 | PS03A | 23.46 | 3.00 | 4.226 | 23.52 | 5.57 | <15.12 | <3.58 | | 191 | SAL22-C | PS03B | 23.46 | 3.02 | 4.254 | 22.47 | 5.28 | <15.12 | <3.55 | | 203 | SAL23 | PS03A | 23.40 | 2.99 | 4.201 | <6.48 | <1.54 | <15.12 | <3.60 | | 210 | SAL24 | PS03A | 23.05 | 2.99 | 4.138 | <6.48 | <1.57 | <15.12 | <3.65 | | 002 | SOL1 | PS11A | 23.08 | 3.13 | 4.338 | <6.48 | <1.49 | <15.12 | <3.49 | | 010 | SOL2 | PS11A | 23.28 | 2.97 | 4.143 | <6.48 | <1.56 | <15.12 | <3.65 | | 011 | SOL2-C | PS11B | 23.30 | 3.00 | 4.196 | <6.48 | <1.54 | <15.12 | <3.60 | | 023 | SOL3 | PS11A | 23.28 | 2.98 | 4.165 | <6.48 | <1.56 | <15.12 | <3.63 | | 033 | SOL4 | PS11A | 23.00 | 2.97 | 4.101 | <6.48 | <1.58 | <15.12 | <3.69 | | 034 | SOL4-C | PS11B | 23.00 | 3.05 | 4.212 | <6.48 | <1.54 | <15.12 | <3.59 | | 043 | SOL5 | PS11B | 23.03 | 3.06 | 4.223 | <6.48 | <1.53 | <15.12 | <3.58 | | 051 | SOL6 | PS11A | 23.26 | 3.01 | 4.203 | 15.66 | 3.73 | 45.06 | 10.72 | | 052 | SOL6-C | PS11B | 23.26 | 3.01 | 4.203 | 15.75 | 3.75 | 44.82 | 10.66 | | 061 | SOL7 | PS11A | 23.17 | 3.01 | 4.180 | 25.26 | 6.04 | 41.01 | 9.81 | | 067 | SOL8 | PS11A | 23.45 | 3.00 | 4.216 | <6.48 | <1.54 | <15.12 | <3.59 | | 073 | SOL9 | PS11A | 23.37 | 2.99 | 4.195 | <6.48 | <1.54 | <15.12 | <3.60 | | 080 | SOL10 | PS11A | 23.50 | 3.00 | 4.233 | <6.48 | <1.53 | <15.12 | <3.57 | | 081 | SOL10-C | PS11B | 23.50 | 3.01 | 4.247 | <6.48 | <1.53 | <15.12 | <3.56 | | 092 | SOL11 | PS11A | 23.00 | 3.02 | 4.170 | <6.48 | <1.55 | <15.12 | <3.63 | | 104 | SOL12 | PS11A | 23.00 | 3.22 | 4.445 | <6.48 | <1.46 | <15.12 | <3.40 | | 105 | SOL12-C | PS11B | 23.00 | 3.20 | 4.417 | <6.48 | <1.47 | <15.12 | <3.42 | | 114 | SOL13 | PS11A | 23.43 | 3.02 | 4.241 | <6.48 | <1.53 | <15.12 | <3.57 | | 120 | SOL14 | PS11A | 23.42 | 3.04 | 4.267 | <6.48 | <1.52 | <15.12 | <3.54 | | 127 | SOL15 | PS11A | 23.37 | 3.01 | 4.223 | <6.48 | <1.53 | <15.12 | <3.58 | | 135 | SOL16 | PS11A | 23.29 | 3.01 | 4.208 | <6.48 | <1.54 | <15.12 | <3.59 | | 136 | SOL16-C | PS11B | 23.29 | 3.00 | 4.195 | <6.48 | <1.54 | <15.12 | <3.60 | | 148 | SOL17 | PS11A | 23.01 | 3.02 | 4.165 | <6.48 | <1.56 | <15.12 | <3.63 | | 155 | SOL18 | PS11A | 22.99 | 3.00 | 4.142 | <6.48 | <1.56 | <15.12 | <3.65 | | 163 | SOL19 | PS11A | 23.00 | 3.06 | 4.226 | 14.73 | 3.49 | <15.12 | <3.58 | | 164 | SOL19-C | PS11B | 23.00 | 3.06 | 4.226 | 17.49 | 4.14 | <15.12 | <3.58 | | 173 | SOL20 | PS11A | 23.00 | 3.00 | 4.136 | <6.48 | <1.57 | <15.12 | <3.66 | | 179 | SOL21 | PS11A | 23.08 | 3.01 | 4.165 | 15.90 | 3.82 | <15.12 | <3.63 | | 187 | SOL22 | PS11A | 23.28 | 3.01 | 4.208 | <6.48 | <1.54 | <15.12 | <3.59 | | 199 | SOL23 | PS11A | 23.25 | 3.01 | 4.202 | <6.48 | <1.54 | <15.12 | <3.60 | | 200 | SOL23-C | PS11B | 23.29 | 3.00 | 4.196 | <6.48 | <1.54 | <15.12 | <3.60 | | 208 | SOL24 | PS11A | 23.03 | 3.01 | 4.161 | <6.48 | <1.56 | <15.12 | <3.63 | Note: BOLDED = Analytical results > EQL. With an average air volume sample of 4.20 m³ the Method Detection Limit (MDL) for Diazinon during this study was 1.54 ng/m³ and the Estimated Quantitative Level (EQL) was 7.70 ng/m³. For Diazoxon the MDL was 3.60 ng/m³ and the EQL was 18.0 ng/m³. Data completeness for this study was 100%. For Diazinon, approximately 84% of the 192 ambient samples were less than the MDL. The laboratory's analytical results reported detectable levels (below the EQL) of 2.81 ng/m³ (Chualar) to a maximum of 17.30 ng/m³ (Gilroy background site). A major infestation of fleas was reported in the area surrounding the site and at least one tenant nearby stated that Diazinon was used during this period. The nearest fields that could have possibly had Diazinon applied were just beyond one (1) mile to the south and southwest. The highest measured value at a non-background site was 13.45 ng/m³ at Salinas during the seventh week. Only three (3) samples exceeded the EQL of 7.70 ng/m³ (GIL13, SAL20 and SAL18). For Diazoxon, approximately 96% of the 192 ambient samples were less than the MDL. The laboratory's analytical results reported levels from 4.79 ng/m³ (Gilroy) to a maximum of 12.01 ng/m³ (Chualar during the third week). No samples exceeded the EQL of 18.00 ug/m³. Further reference material can be found in Appendix D which presents the field log sheets and Appendix F which presents the calibration/certification reports. #### 6.0 Quality Control Results Quality control field samples included 48 collocated pairs, seven (7) field spikes, four (4) trip spikes and eight (8) trip blanks. The Relative Percent Difference (RPD) of the collocated samples for Diazinon ranged from -8.8% to +17.1% with an average of 2.0%. The RPD of the collocated samples for Diazoxon ranged from -3.0% to +1.2% with an average of -0.8%. See Table 3 (Diazinon and Diazoxon Ambient QC Collocated Results) on the following page. General lab practice takes every tenth sample and analyzes the sample again which is called a duplicate sample. The RPD of the duplicate samples for Diazinon ranged from +1.6% to +3.9% with an average of 2.7%. The RPD of the one duplicate sample above the MDL for Diazoxon was -0.1%. The average Diazinon field spike recovery was 116%. The average Diazoxon field spike recovery was 99%. See Tables 4 (Diazinon Ambient QC Field Spike Results) and 5 (Diazoxon Ambient QC Field Spike Results) on the following pages. The average Diazinon trip spike recovery was 127%. The average Diazoxon trip spike recovery was 106%. The values recovered from the trip blanks were all less than the MDL. See Table 6 (Diazinon and Diazoxon Ambient QC Trip Spike and Blank Results) on the following pages for trip spike and trip blank results. The formula for calculating the RPD for Table three (3) is as follows: $$RPD = \frac{(Collocated(ng/m^3) - Sample(ng/m^3)}{(Collocated(ng/m^3) + Sample(ng/m^3) \div 2)}$$ Table 3: Diazinon and Diazoxon Ambient QC Collocated Results | | Collocated Sample Results | | | | | | | | | | | | | |-----|---------------------------|-------------|-----------|------------|----------|------------|------------|----------|------------|--|--|--|--| | | Diazino | n & Diazoxo | n | | Diazinon | Juito | | Diazoxon | | | | | | | Log | Sample | Date | Date | Collocated | Sample | Rel. % | Collocated | Sample | Rel. % | | | | | | # | Name | Collected | Analyzed | (ng/m3) | (ng/m3) | Difference | | (ng/m3) | Difference | | | | | | 013 | CHU2-C | 7/3/2009 | 7/7/2009 | <1.54 | <1.55 | N.A. | <3.59 | <3.62 | N.A. | | | | | | 036 | CHU4-C | 7/9/2009 | 7/14/2009 | <1.57 | <1.58 | N.A. | <3.67 | <3.68 | N.A. | | | | | | 054 | CHU6-C | 7/16/2009 | 7/20/2009 | 6.41 | 6.84 | -6.5% | 11.66 | 12.01 | -3.0% | | | | | | 083 | CHU10-C | 7/23/2009 | 7/28/2009 | <1.53 | <1.53 | N.A. | <3.57 | <3.56 | N.A. | | | | | | 107 | CHU12-C | 7/31/2009 | 8/3/2009 | 4.86 | 4.29 | 12.5% | <3.43 | <3.43 | N.A. | | | | | | 150 | CHU17-C | 8/6/2009 | 8/11/2009 | 2.81 | 3.07 | -8.8% | <3.63 | <3.63 | N.A. | | | | | | 166 | CHU19-C | 8/13/2009 | 8/17/2009 | <1.56 | <1.56 | N.A. | <3.63 | <3.63 | N.A. | | | | | | 202 | CHU23-C | 8/20/2009 | 8/25/2009 | <1.55 | <1.55 | N.A. | <3.61 | <3.63 | N.A. | | | | | | 018 | GIL2-C | 7/3/2009 | 7/7/2009 | <1.57 | <1.57 | N.A. | <3.66 | <3.67 | N.A. | | | | | | 030 | GIL4-C | 7/9/2009 | 7/14/2009 | <1.56 | <1.56 | N.A. | <3.65 | <3.63 | N.A. | | | | | | 048 | GIL6-C | 7/16/2009 | 7/20/2009 | <1.56 | <1.57 | N.A. | <3.63 | <3.66 | N.A. | | | | | | 089 | GIL10-C | 7/23/2009 | 7/28/2009 | <1.53 | <1.53 | N.A. | <3.57 | <3.57 | N.A. | | | | | | 101 | GIL12-C | 7/31/2009 | 8/3/2009 | <1.55 | <1.54 | N.A. | <3.61 | <3.60 | N.A. | | | | | | 146 | GIL17-C | 8/6/2009 | 8/11/2009 | <1.56 | <1.56 | N.A. | <3.63 | <3.63 | N.A. | | | | | | 160 | GIL19-C | 8/13/2009 | 8/17/2009 | <1.54 | <1.54 | N.A. | <3.58 | <3.59 | N.A. | | | | | | 196 | GIL23-C | 8/20/2009 | 8/25/2009 | <1.55 | <1.55 | N.A. | <3.62 | <3.62 | N.A. | | | | | | 006 | HOL1-C | 7/3/2009 | 7/6/2009 | <1.49 | <1.51 | N.A. | <3.47 | <3.53 | N.A. | | | | | | 040 | HOL4-C | 7/9/2009 | 7/15/2009 | <1.58 | <1.58 | N.A. | <3.69 | <3.70 | N.A. | | | | | | 058 | HOL6-C | 7/16/2009 | 7/20/2009 | <1.53 | <1.52 | N.A. | <3.57 | <3.54 | N.A. | | | | | | 087 | HOL10-C | 7/23/2009 | 7/28/2009 | <1.51 | <1.52 | N.A. | <3.53 | <3.55 | N.A. | | | | | | 111 | HOL12-C | 7/31/2009 | 8/3/2009 | <1.4 | <1.39 | N.A. | <3.26 | <3.23 | N.A. | | | | | | 142 | HOL16-C | 8/6/2009 | 8/10/2009 | <1.57 | <1.55 | N.A. | <3.65 | <3.61 | N.A. | | | | | | 170 | HOL19-C | 8/13/2009 | 8/17/2009 | <1.56 | <1.56 | N.A. | <3.64 | <3.64 | N.A. | | | | | | 193 | HOL22-C | 8/20/2009 | 8/25/2009 | <1.52 | <1.52 | N.A. | <3.54 | <3.54 | N.A. | | | | | | 009 | KCY2-C | 7/3/2009 | 7/7/2009 | <1.54 | <1.52 | N.A. | <3.59 | <3.54 | N.A. | | | | | | 032 | KCY4-C | 7/9/2009 | 7/14/2009 | <1.54 | <1.52 | N.A. | <3.59 | <3.55 | N.A. | | | | | | 050 | KCY6-C | 7/16/2009 | 7/20/2009 | <1.56 | <1.58 | N.A. | <3.64 | <3.68 | N.A. | | | | | | 079 | KCY10-C | 7/23/2009 | 7/27/2009 | <1.53 | <1.54 | N.A. | <3.57 | <3.59 | N.A. | | | | | | 103 | KCY12-C | 7/31/2009 | 8/3/2009 | <1.51 | <1.48 | N.A. | <3.53 | <3.46 | N.A. | | | | | | 134 | KYC16-C | 8/6/2009 | 8/10/2009 | <1.49 | <1.54 | N.A. | <3.48 | <3.60 | N.A. | | | | | | 162 | KYC19-C | 8/13/2009 | 8/17/2009 | <1.54 | <1.54 | N.A. | <3.59 | <3.60 | N.A. | | | | | | 198 | | | 8/25/2009 | | <1.55 | N.A. | <3.63 | >3.63 | N.A. | | | | | | 015 | SAL2-C | 7/3/2009 | 7/7/2009 | <1.55 | <1.56 | N.A. | <3.63 | <3.63 | N.A. | | | | | | 038 | SAL4-C | 7/9/2009 | 7/15/2009 | <1.70 | <1.72 | N.A. | <3.98 | <4.00 | N.A. | | | | | | 056 | SAL6-C | 7/16/2009 | 7/20/2009 | 3.73 | 3.86 | -3.4% | 9.88 | 9.76 | 1.2% | | | | | | 085 | SAL10-C | 7/23/2009 | 7/28/2009 | <1.57 | <1.52 | N.A. | <3.65 | <3.55 | N.A. | | | | | | 109 | SAL12-C | 7/31/2009 | 8/3/2009 | 4.50 | 4.09 | 9.5% | <3.34 | <3.37 | N.A. | | | | | | 140 | SAL16-C | 8/6/2009 | 8/10/2009 | <1.57 | <1.55 | N.A. | <3.65 | <3.62 | N.A. | | | | | | 168 | SAL19-C | 8/13/2009 | 8/17/2009 | <1.56 | <1.56 | N.A. | <3.63 | <3.63 | N.A. | | | | | | 191 | SAL22-C | 8/20/2009 | 8/25/2009 | 5.28 | 5.57 | -5.2% | <3.55 | <3.58 | N.A. | | | | | | 011 | SOL2-C | 7/3/2009 | 7/7/2009 | <1.54 | <1.56 | N.A. | <3.60 | <3.65 | N.A. | | | | | | 034 | SOL4-C | 7/9/2009 | 7/14/2009 | <1.54 | <1.58 | N.A. | <3.59 | <3.69 | N.A. | | | | | | 052 | SOL6-C | 7/16/2009 | 7/20/2009 | 3.75 | 3.73 | 0.6% | 10.66 | 10.72 | -0.5% | | | | | | 081 | SOL10-C | 7/23/2009 | 7/27/2009 | <1.53 | <1.53 | N.A. | <3.56 | <3.57 | N.A. | | | | | | 105 | SOL12-C | 7/31/2009 | 8/3/2009 | <1.47 | <1.46 | N.A. | <3.42 | < 3.40 | N.A. | | | | | | 136 | SOL16-C | 8/6/2009 | 8/10/2009 | <1.54 | <1.54 | N.A. | < 3.60 | < 3.59 | N.A. | | | | | | 164 | SOL19-C | 8/13/2009 | 8/17/2009 | 4.14 | 3.49 | 17.1% | <3.58 | < 3.58 | N.A. | | | | | | 200 | SOL23-C | 8/20/2009 | 8/25/2009 | <1.54 | <1.54 | N.A. | <3.60 | <3.60 | N.A. | | | | | Field spike percent recoveries are shown in Table 4 for Diazinon and Table 5 for Diazoxon below. Spiked XAD resin sorbent tubes were prepared at the laboratory and placed in the freezer the Thursday preceding the start of next weeks sampling. The laboratory spike values were 72 ng/sample for Diazinon and 130 ng/sample for Diazoxon. While viewing Field Spike Tables 4 and 5, reference the below equations describing the calculations necessary to determine the percent recovery of each field spike. $$Field\ Spike\ \frac{ng}{m^3} = Field\ Recovery \left(\frac{ng}{sample}\right) \times\ Total\ Volume \left(\frac{sample}{m^3}\right)$$ Net Spike $$\frac{ng}{m^3}$$ = Field Spike Concentration $\left(\frac{ng}{m^3}\right)$ - Primary Sample $\left(\frac{ng}{m^3}\right)$ Net Spike $$\frac{ng}{sample} = Net Spike \left(\frac{ng}{m^3}\right) \times Total Volume \left(\frac{m^3}{sample}\right)$$ $$Spike\ Percent\ Recovery\ \frac{ng}{sample} = Net\ Spike \left(\frac{ng}{sample}\right) \div Lab\ Spike\ Value \left(\frac{ng}{sample}\right) \times 100\%$$ **Table 4: Diazinon Ambient QC Field Spike Results** | Log | Sample | Field | Total | Field Spike | Primary | Net | Net | Lab Spike | Spike | |-----|----------|-------------|-------------------|---------------|----------------------|----------------------|-------------|-------------|----------| | # | ID | Recovery | Volume | Concentration | Sample | Spike | Spike | Value | Percent | | | | (ng/sample) | (m ³) | (ng/m³) | (ng/m ³) | (ng/m ³) | (ng/sample) | (ng/sample) | Recovery | | 020 | GIL3 | <6.48 | 4.190 | N.A. | <1.55 | N.A. | N.A. | N.A. | N.A. | | 021 | GIL3-FS | 74.520 | 4.197 | 17.755 | N.A. | 17.755 | 74.518 | 72 | 103% | | 093 | CHU11 | <6.48 | 4.193 | N.A. | <1.55 | N.A. | N.A. | N.A. | N.A. | | 094 | CHU11-FS | 75.480 | 4.110 | 18.363 | N.A. | 18.363 | 75.472 | 72 | 105% | | 097 | GIL11 | <6.48 | 4.225 | N.A. | <1.53 | N.A. | N.A. | N.A. | N.A. | | 098 | GIL11-FS | 68.820 | 4.232 | 16.261 | N.A. | 16.261 | 68.817 | 72 | 96% | | 131 | GIL16 | 15.270 | 4.157 | N.A. | 3.673 | N.A. | N.A. | N.A. | N.A. | | 132 | GIL16-FS | 101.010 | 4.171 | 24.218 | N.A. | 20.545 | 85.693 | 72 | 119% | | 137 | CHU16 | 21.510 | 4.177 | N.A. | 5.150 | N.A. | N.A. | N.A. | N.A. | | 138 | CHU16-FS | 108.990 | 4.170 | 26.137 | N.A. | 20.987 | 87.516 | 72 | 122% | | 184 | GIL22 | <6.48 | 4.194 | N.A. | <1.54 | N.A. | N.A. | N.A. | N.A. | | 185 | GIL22-FS | 92.040 | 4.187 | 21.980 | N.A. | 21.980 | 92.030 | 72 | 128% | | 188 | CHU22 | <6.48 | 4.222 | N.A. | <1.53 | N.A. | N.A. | N.A. | N.A. | | 189 | CHU22-FS | 99.570 | 4.229 | 23.545 | N.A. | 23.545 | 99.572 | 72 | 138% | **Table 5: Diazoxon Ambient QC Field Spike Results** | Log | Sample | Field | Total | Field Spike | Primary | Net | Net | Lab Spike | Spike | |-----|----------|-------------|-------------------|---------------|----------------------|----------------------|-------------|-------------|----------| | # | ID | Recovery | Volume | Concentration | Sample | Spike | Spike | Value | Percent | | | | (ng/sample) | (m ³) | (ng/m³) | (ng/m ³) | (ng/m ³) | (ng/sample) | (ng/sample) | Recovery | | 020 | GIL3 | <15.12 | 4.190 | N.A. | <3.61 | N.A. | N.A. | N.A. | N.A. | | 021 | GIL3-FS | 135.510 | 4.197 | 32.287 | N.A. | 32.287 | 135.509 | 130 | 104% | | 093 | CHU11 | <15.12 | 4.193 | N.A. | <3.61 | N.A. | N.A. | N.A. | N.A. | | 094 | CHU11-FS | 106.890 | 4.110 | 26.004 | N.A. | 26.004 | 106.876 | 130 | 82% | | 097 | GIL11 | <15.12 | 4.225 | N.A. | <3.58 | N.A. | N.A. | N.A. | N.A. | | 098 | GIL11-FS | 106.290 | 4.232 | 25.115 | N.A. | 25.115 | 106.287 | 130 | 82% | | 131 | GIL16 | <15.12 | 4.157 | N.A. | <3.64 | N.A. | N.A. | N.A. | N.A. | | 132 | GIL16-FS | 136.590 | 4.171 | 32.749 | N.A. | 32.749 | 136.596 | 130 | 105% | | 137 | CHU16 | <15.12 | 4.177 | N.A. | <3.62 | N.A. | N.A. | N.A. | N.A. | | 138 | CHU16-FS | 132.660 | 4.170 | 31.813 | N.A. | 31.813 | 132.660 | 130 | 102% | | 184 | GIL22 | <15.12 | 4.194 | N.A. | <3.60 | N.A. | N.A. | N.A. | N.A. | | 185 | GIL22-FS | 143.970 | 4.187 | 34.382 | N.A. | 34.382 | 143.957 | 130 | 111% | | 188 | CHU22 | <15.12 | 4.222 | N.A. | <3.58 | N.A. | N.A. | N.A. | N.A. | | 189 | CHU22-FS | 141.630 | 4.229 | 33.490 | N.A. | 33.490 | 141.629 | 130 | 109% | The formula for calculating the Recovery % for Table six (6) is as follows: $$Recovery\% = \left(\left(\frac{ng}{sample} \right) - Expected\left(\frac{ng}{sample} \right) \right) \div Expected\left(\frac{ng}{sample} \right) \right) \times 100\%$$ Table 6: Diazinon and Diazoxon Ambient QC Spike and Blank Results | | Trip Spike Results | | | | | | | | | | | | | | |-----|--------------------|-------------|-----------|-------------|-------------|----------|-------------|-------------|----------|--|--|--|--|--| | | Diazin | on & Diazox | on | | Diazinon | | | Diazoxon | | | | | | | | Log | Sample | Date | Date | Expected | Measured | Recovery | Expected | Measured | Recovery | | | | | | | # | Name | Collected | Analyzed | (ng/sample) | (ng/sample) | (%) | (ng/sample) | (ng/sample) | (%) | | | | | | | 028 | TS1 | 7/7/2009 | 7/13/2009 | 72 | 84.63 | 117.5% | 130 | 135.78 | 104.4% | | | | | | | 099 | TS2 | 7/23/2009 | 7/29/2009 | 72 | 87.00 | 120.8% | 130 | 130.62 | 100.5% | | | | | | | 143 | TS3 | 8/3/2009 | 8/10/2009 | 72 | 101.70 | 141.3% | 130 | 133.98 | 103.1% | | | | | | | 205 | TS4 | 8/18/2009 | 8/25/2009 | 72 | 92.46 | 128.4% | 130 | 152.46 | 117.3% | | | | | | | | Trip Blank Results | | | | | | | | | | | | | | | | Diazin | on & Diazox | on | | Diazinon | | Diazoxon | | | | | | | | | Log | Sample | Date | Date | MDL | Blank | Recovery | MDL | Blank | Recovery | | | | | | | # | Name | Collected | Analyzed | (ng/sample) | (ng/sample) | (%) | (ng/sample) | (ng/sample) | (%) | | | | | | | 019 | TB1 | 7/3/2009 | 7/6/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | | 027 | TB2 | 7/7/2009 | 7/13/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | | 071 | TB3 | 7/16/2009 | 7/21/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | | 090 | TB4 | 7/21/2009 | 7/28/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | | 124 | TB5 | 7/30/2009 | 8/5/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | | 144 | TB6 | 8/3/2009 | 8/10/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | | 183 | TB7 | 8/13/2009 | 8/18/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | | 194 | TB8 | 8/17/2009 | 8/25/2009 | 6.47 | <6.47 | N.A. | 15.12 | <15.12 | N.A. | | | | | | Calculated values in all the above tables were produced from original laboratory data using six (6) decimal places when available. QC results were all within expected parameters except for Diazinon trip spike results in which two (2) samples exceeded 125%. #### 7.0 Summary The highest Diazinon concentration reported was collected at the Gilroy ambient background site during week five (5) with a concentration of 17.3 ng/m³. Elevated concentrations at the Gilroy site may be due to a major flea infestation in the area. The school and local residents responded to the infestation by hiring professionals to spray the area for fleas. In addition to the Gilroy results, the only two (2) samples to exceed the EQL concentration of 7.7 ng/m³ for Diazinon were at Salinas during weeks six (6) and seven (7) with concentrations of 11.03 ng/m³ and 13.45 ng/m³ respectively. The Chualar site was surrounded by farming activity and reported 12 Diazinon results between the MDL and the EQL. Likewise, the Salinas site was in close proximity to farming activity and reported ten (10) results between the MDL and the EQL. Soledad was approximately 0.6 miles away from upwind farming activity and reported six (6) Diazinon results between the MDL and the EQL. The Hollister and King City sites had less upwind farming activity nearby than Salinas, Chualar and Soledad which may explain why they did not receive any measureable samples. Similar, but lower and fewer results were noted for Diazoxon. All Diazoxon results above the MDL were collected during weeks three (3) and five (5), week five (5) having a singular result coinciding with Gilroy's highest Diazinon value. No samples above the MDL for either Diazinon or Diazoxon were collected during weeks one (1), two (2) or four (4).